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(75%) 

isolated yield) (entry 16) and cyclopropylphenylmethane (73%) 
(entry 17), respectively, upon treatment with the corresponding 
organolithium compounds under the same reaction condi­
tions." 

The following procedure for the synthesis of l-phenyl-ds-
1-heptene (8) is representative (entry 4). To a suspension of 
cuprous iodide (3.82 g, 20 mmol) in dry THF (50 mL) was 
added a solution of lithium ds-cinnamyl alkoxide (prepared 
on treatment of m-cinnamyl alcohol (2.68 g, 20 mmol) with 
ethereal CH3Li (1.57 M, 12.8 mL) at 0 0C) at room temper­
ature. The mixture was stirred for an additional 30 min before 
cooling to —78 0 C. A hexane solution of n-BuLi (39.2 mL, 1-53 
M) was added for 10 min, and to the resulting suspension was 
added a solution of 1 (9.90 g, 20 mmol) in dry DMF (100 mL) 
for 30 min. The mixture was maintained at the same temper­
ature for 1 h and then warmed to room temperature for 2 h 
with continuous stirring. After quenching with a saturated 
NH4CI solution (O 0C) the ethereal extract was washed with 
a 0.2 N HCl solution and dried (MgSO4). To the concentrated 
solution was added light petroleum ether, and precipitated 
triphenylphosphine oxide was filtered off. Distillation of the 
filtrate gave a mixture of l-phenyl-m-heptene (8) and 3-
phenyl-1-heptene (9) (2.8 g, 80% yield), bp 90-95 0 C (4 
mmHg). The GLC analysis showed that the relative ratio of 
8 and 9 was 96 vs. 4. 

The course of the reaction can be readily accounted for, if 
one assumes that the nucleophilic attack of R2 of the amino-
cuprate of the counterion toward the a-carbon of R1 of 10 in 
a S N 2 fashion gives R 1 -R 2 along with triphenylphosphine 
oxide and TV.yV-methylphenylaminocuprate. 

R'OCuR2
3Li3 + 1 —»- [R1OPPh3

+[R^CuN(CH3)PhLi2]" 

I 
R1R2 + Ph 3 P=O + Rz2CuN(CH3)PhLi, 

Work is currently in progress on the extension of this reac­
tion to other systems and application to the synthesis of several 
natural products. 
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Trimethylgo|d(III) Complexes of Reactive Sulfoxonium 
and Sulfonium Ylides 

Sir: 

Phosphonium ylides have been used for over 20 years12 as 
reagents for organic synthesis (Wittig reagents). More recently 
sulfur ylides3,4 have been found to display important synthetic 
utility. The pioneering work of Schmidbaur5 has elucidated 
the ability of the phosphorus ylides to function as effective 
organometallic ligands. Recently Kurras et al.6 and Manzer7 

have extended this work in the transition series of elements. 
Our studies8 and those of others9,10 have suggested that the 

ability of dithiocarbamate ligands, I, to delocalize positive 

M c = N 

/ v \ 
I 

charge from the metal center is a determining factor in al­
lowing this ligand to stabilize such unusual oxidation states as 
Ni lv, Mn"1, Cu1", or Felv. By analogy we were attracted to 
Schmidbaur's metal ylide complexes, II, which show re-

v / C H ' / 
M V" / \ / v 

CH2 R 
II 

markable stability for compounds containing transition 
metal-carbon bonds.' ' Presumably the ability of ylides to re­
move positive charge from the metal center (reducing the 
rtlfetal) helps to account for their stabilizing influence on 
metal-carbon bonding. This effect is even more remarkable 
when one notes that triphenylphosphine does not displace the 
ylide from (CH3h AMCH2? (CU3) 3, III 

Sulfur ylides are substantially less stable than phosphorus 
ylides. However, both CH2S(CH^)2 and CH2SO(CH3);, have 
been generated and utilized3 in situ. We find that trimethyl-
gold(III) can be used to stabilize these reactive ylides. Fur­
thermore we note that dimethylphenylphosphine can be used 
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Figure 1. A perspective view of the (CH3)3AuCH2SO(CH3)2 molecule 
with the labeling scheme. The atoms are represented by 30% probability 
thermal ellipsoids. 

CH3 

C H 3 - A u - CH2P+(CHs)3 

I 
CH3 

to l iberate the ylide from the sulfoxonium ylide complex IV 

(but not from the sulfonium ylide species V) . 

CH3 O CH3 

I Il I 
C H 3 - A u - - C H 2 S ( C H 3 ) 2 C H 3 - A u " - C H 2 S ( C H 3 ) 2 

I + I + 

CH3 CH3 

IV V 

Addit ion of a T H F solution of t r imethylgold(I I I ) t r iphen-

ylphosphine to a T H F solution of C H 2 S O ( C H 3 ) 2 under ni­

trogen results in formation of IV (see Figure 1). After evapo­

ration of the solvent, a white residue remained which was 

washed with hexane. Recrystal l izat ion from CHCI3 gave 

colorless crystals , 1 2 ' 1 3 m p 118-120 0 C dec. Anal . Calcd for 

A u C 6 H n O S : C, 21.55; H , 5.13; S, 9.58%. Found: C, 21.46; 

H, 5.14; S, 9.48. 

By stirring for 3 days a T H F solution containing sodium 

hydride, trimethylsulfonium chloride, and tr imethylgold(III) 

triphenylphosphine, complex V was obtained. The complex was 

recrystallized from CHCI3, giving colorless crystals, mp 83-85 
0 C . Anal . Calcd for A u C 6 H n S : C, 22.64; H , 5.36; S, 10.09. 

Found: C, 22.59; H , 5.31; S, 10.01. 

Both IV and V are air stable. 

Acids selectively eliminate CH4 from IV and V. In each case 

a cis product, VI, is formed. Wi th both H C l and C F 3 C O O H 

CH3 

I 
CH3—Au—Y X= acid anion 

I Y = ylide 

X 

VI 

the reaction is very much faster than with CH3COOH, 

suggesting that a protonation of the metal may be important. 

Recently Tobias15 has demonstrated substantial nucleophilicity 

for the isoelectronic anions, Au(CHs) 4
- and P t (CHs) 4

2 - . 

Neither IV nor V reacts with pyridine nor triphenylphos­

phine. 

Although IV is remarkably easy to handle, we have found 

that THF solutions smoothly react with (CHs^PC 6 Hs to 

liberate the reactive sulfoxonium ylide at room temperature. 

With benzophenone quantitative conversion by NMR to the 

Journal of the American Chemical Society / 99:7 / March 

epoxide occurs, VII. The phosphine complex of trimethylgold 

is readily recovered. Similarly V will react with (CH3)3P to 

liberate the ylide. We have no evidence of reactivity of either 

IV or V with ketones in the absence of phosphines. The syn­

thetic utility of these reactions is being explored.16 

IV + (CHs)2PC6H5 + (C6Hs)2C=O 

» (CHs)3AuP(CH3)AH5 

+ (C6Hj)2C CH2 (VH) + Me2SO 
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